青大主页 加入收藏 旧版回顾

 

尚晓笛,女,19943月生,山东潍坊人。中共党员,副教授,硕士研究生导师,青岛大学特聘教授,山东省青创科技计划创新团队负责人。主持国家自然科学基金青年项目1项、中国博士后科学基金面上项目1项、青岛市自然科学基金青年项目1项、青岛市博士后基金项目(一等)1项。在IEEE TGRSIEEE GRSLIEEE JSTARS等国际知名期刊和学术会议上发表学术论文30余篇。其中,以第一/通讯作者发表SCI论文11篇,EI论文3篇,包含ESI高被引论文1篇;申请国家发明专利10项,授权6项,成果转化1项;担任TGRSGRSL等期刊审稿人。

研究方向:高光谱遥感图像处理与信息提取

联系方式:Emailshangxd@qdu.edu.cn

主持的科研项目:

1. 山东省高等学校青创科技计划创新团队(2023KJ232)-遥感信息提取与处理创新团队 2024.01-2026.12

2. 国家自然科学基金青年项目(42301380)-多维信息协同的高光谱波段选择方法研究 2024.01-2026.12

3. 中国博士后科学基金面上项目(2023M731843)-“光谱-区域-类别”特征联合稀疏自表示波段选择方法研究 2023.07-2025.06

4. 青岛市自然科学基金青年项目(23-2-1-64-zyyd-jch)  2023.07-2025.06

5. 青岛市博士后基金项目(一等,QDBSH20230101012)  2023.2-2025.01

 

代表性论文:

1.X. Shang, C. Cui and X. Sun, Spectral-Spatial Hypergraph-Regularized Self-Representation for Hyperspectral Band Selection, IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1-5, Art no. 5504405, 2023. (中科院2)

2. X. Shang, M. Song and C. Chang, Multispatial Filtering Module Cascaded System for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp.1-12, 2022. (中科院1区,Top期刊)

3. X. Shang, Sichao Han, M. Song, Iterative Spatial-Spectral Training Sample Augmentation for Effective Hyperspectral Image Classification, IEEE Geoscience and Remote Sensing Letters, vol. 19, pp.1-5, 2022. (中科院2)

4. X. Shang, M. Song, Y. Wang, et al., Residual Driven Band Selection for Hyperspectral Anomaly Detection, IEEE Geoscience and Remote Sensing Letters, vol. 19, pp.1-5, 2022. (中科院2)

5. X. Shang, M. Song, Y. Wang, et al., Target-Constrained Interference-Minimized Band Selection for Hyperspectral Target Detection, IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 6044-6064, July 2021. (中科院1区,Top期刊,ESI高被引论文)

6. X. Shang, M. Song and C. Chang, An Iterative Random Training Sample Selection Approach to Constrained Energy Minimization for Hyperspectral Image Classification, IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 9, pp. 1625-1629, Sept. 2021. (中科院2)

7. X. Shang, T. Yang, S. Han, et al., Interference-Suppressed and Cluster-Optimized Hyperspectral Target Extraction based on Density Peak Clustering, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 4999-5014, 2021. (中科院2)

8. M. Song, X. Shang* and C. Chang, 3-D Receiver Operating Characteristic Analysis for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 11, pp. 8093-8115, Nov. 2020. (中科院1区,Top期刊)

9. M. Song, X. Shang*, Y. Wang, et al., Class Information-Based Band Selection for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 11, pp. 8394-8416, Nov. 2019. (中科院1区,Top期刊)

10. H. Yu, X. Shang*, M. Song, et al., Union of Class-Dependent Collaborative Representation Based on Maximum Margin Projection for Hyperspectral Imagery Classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 553-556, Nov. 2020. (中科院2)

11. H. Yu, X. Shang, X. Zhang, et al., Hyperspectral Image Classification based on Adjacent Constraint Representation, IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 4, pp. 707-711, April 2021. (中科院2)

12. X. Fu, X. Shang, X. Sun, et al., Underwater Hyperspectral Target Detection with Band Selection, Remote Sensing, vol.12, no.7, pp.1056, 2020. (中科院2)

 

发明专利:

1.一种基于三维接收机工作特性曲线的高光谱图像分类评价方法,202010100198.6授权日期:2023,7,21

2.一种基于局部保留投影的高光谱图像稀疏表示分类方法,201910978651.0授权日期:2023,6,2

3.基于类特征迭代随机采样的高光谱图像谱空分类方法,201910976493.5授权日期:2023,5,5.成果转化

4.一种基于高光谱解混技术的车牌真伪检测方法,202010089208.0授权日期:2023,4,28

5.一种太阳能电池片的黑边和碎片的缺陷检测方法,201810424920.4,授权日期:2022,6,3

6. -空超图正则化稀疏自表示的高光谱波段选择方法202310027994.5,公开日期:2023,4,18

7.一种残差驱动的异常检测波段选择方法,202110620232.7公开日期:2021,9,10

8.一种基于深度前馈网络的高光谱分类方法,202011446700.5,公开日期:2021,3,30

9.一种基于局部相似结构约束的引导性空间一致光伏图像配准方法,202110252806.X,公开日期:2021,7,23

 

 

版权所有  青岛大学计算机科学技术学院  | copyright 2019 School of Computer Science, Qingdao University. All Rights Reserved.